Новости    Библиотека    Таблица эл-тов    Биографии    Карта сайтов    Ссылки    О сайте


предыдущая главасодержаниеследующая глава

Глава VIII. Что же дальше?

Что же дальше?
Что же дальше?

В науке, в отличие от детективной литературы, раскрытие какой-либо тайны не является концом истории, а, наоборот, служит началом новой: на месте одной решенной проблемы возникает несколько новых, гораздо более широких или глубоких. Решение каждой научной проблемы раньше сравнивали с достижением высоты, откуда существенно расширялся горизонт. В геологии, да и в других "земных науках", решение любой крупной проблемы, вероятно, лучше всего сравнивать с "повышением" гипсометрического уровня наблюдений. В самом деле, пока наблюдатели "ползали" по земле и детально изучали многие стороны рельефа и геологии, хотя и было открыто очень много месторождений полезных ископаемых и высказано много гипотез и идей, все же многое оставалось предположительным и даже неизвестным.

С конца сороковых годов благодаря развитию авиации удалось "поднять" точки наблюдения на 3-5 км над землей, и с помощью разработанных аэрогеологических, аэровизуальных методов познание и современных процессов, и геологического строения существенно расширилось. Развитие космонавтики способствовало тому, что с конца шестидесятых годов "точки наблюдения" Поднялись на высоту нескольких сотен километров, и методы космической геологии позволяют не только увидеть одновременно континенты, океаны и моря, но и г знать многие особенности их глубинного геологического строения. Не случайно, например, благодаря космическим снимкам удалось получить подтверждение высказанного предположения о смещении Аравийского полуострова по Мертвоморско-Акабскому глубинному разлому. Общеизвестно, что методы космической геологии оказывают существенную помощь в открытии новых месторождений нефти, газа, различных руд и других полезных ископаемых.

Точно так же обстоит дело и в нефтегазовой геологии. Теперь после создания осадочно-миграционной теории происхождения нефти и углеводородных газов, с одной стороны, возникли новые проблемы, с другой - открылись такие широкие возможности для решения весьма актуальных для практики поисковых работ вопросов, о которых раньше нельзя было и мечтать. В самом деле, поскольку нефть образуется из ископаемого органического вещества в результате развития определенных химических процессов, познание последних только тогда будет полным, когда их можно будет описать определенными уравнениями химических реакций с указанием не только количества исходных веществ и продуктов реакции, но и их термодинамических констант. Вот тогда и для каждой нефти можно будет создать модель ее образования и по информации о термодинамической истории региона достаточно точно определять количество и качество образовавшихся нефтей и углеводородных газов.

Мало того, поскольку, как показывают результаты проведенных исследований, нефть и газы, генерированные одной толщей пород, по ряду признаков (соотношению отдельных углеводородов, содержанию редких элементов, изотопному составу углерода, серы и водорода и т. д.) могут отличаться от аналогичных веществ, генерированных другой толщей, открывается широкая возможность для идентификации нефтей в залежах и определении с помощью ЭВМ (по программе распознавания образов и др.) доли влияния каждой генерирующей толщи в формировании конкретных залежей. Это, в свою очередь, позволит определять пути миграции нефтей и газов и, следовательно, повысит степень достоверности прогноза перспектив нефтегазоносное™ ловушек, находящихся на путях миграции. Кроме того, можно существенно повысить эффективность прямых методов поиска нефтяных и газовых месторождений.

Таким образом, продолжение исследований с применением всех новейших методов анализов веществ и обработки поступающей информации позволит с достаточной степенью надежности прогнозировать количество и качество нефти и газа в пределах отдельных площадей до проведения в них глубокого бурения и тем самым максимально повысить эффективность поискового бурения. Особенно важным представляется определение глубинных границ распространения залежей нефти, конденсата и газа в конкретных регионах: в настоящее время максимальные глубины, с которых получены притоки нефти, составляют 6542 м, газа - 8082 м. Однако это не может свидетельствовать о действительных максимальных глубинах возможного залегания нефти и газа: не исключено, что в районах, характеризующихся более низким геотермическим градиентом, например в Южно-Каспийском бассейне, Прикаспийской впадине и других, залежи указанных ископаемых имеются и на значительно больших глубинах.

Знание максимальных глубин залегания нефти и газа необходимо уже потому, что возможности бурения непрерывно возрастают. Не менее важно повышение степени достоверности прогнозов при поисках нефти и газа в пределах акваторий, где стоимость проведения работ несоизмеримо выше, чем на суше.

Анализируя задачи, которые возникают перед поисково-разведочными работами на нефть и газ, надо иметь в виду следующие обстоятельства. Во-первых, в любом регионе по мере проведения поисковых работ сначала открывают наиболее легко выявляемые месторождения и лишь затем всё более и более трудно выявляемые залежи на больших глубинах или со сложными условиями залегания. Примером может служить открытие в Западной Канаде месторождения Западная Пембина на расстоянии всего 10 км от выявленного 25 лет назад и разрабатываемого месторождения Пембина. Правда, в новом месторождении нефтяная залежь залегает на глубине 2750 м, в то время как в ранее открытом глубина залегания залежи была равна 914-1870 м. При этом начальные запасы ранее открытого месторождения составляли 208 млн. т (осталось в настоящее время всего 88 млн. т), а во вновь открытом оцениваются в 130-60 млн. т. Как правило, начальные оценки всегда оказываются заниженными, и можно полагать, что в действительности запасы окажутся больше.

Детальные геохимические исследования позволяют прогнозировать наличие залежей нефти во всем стратиграфическом разрезе. Более того, используя геохимическую информацию, можно с достаточной степенью надежности проследить пути миграции нефти и газа из зон генерации к зонам аккумуляции и таким образом определить те участки зоны, в пределах которых ловушки будут заполнены углеводородами. При этом, учитывая термодинамические условия и общие физические законы распределения и миграции газообразных и жидких флюидов, можно прогнозировать фазовый состав углеводородов в таких залежах, т. е. определять, какие залежи (нефтяные, газовые или газоконденсатные) могут содержаться в еще не открытых месторождениях.

Создание моделей образования залежей нефти и конденсата может оказать существенную помощь и при решении другой важнейшей научно-технической проблемы - повышения коэффициента нефте- и конденсатоотдачи пластов. Дело в том, что существующими методами добычи из недр извлекается обычно не более 25 % содержащейся в них нефти, а нередко и меньше. Реже эта величина повышается до 33-35 % и лишь в очень редких случаях превышает 50%, Остальная нефть остается в пластах не извлеченной.

Актуальность решения этой проблемы очевидна и не нуждается в комментариях. Повышение коэффициента нефтеотдачи равносильно открытию новых месторождений. При этом "открытие" таких месторождений в технико-экономическом плане несоизмеримо более выгодно, чем открытие новых месторождений: ведь отпадает необходимость в проведении дорогостоящих геологоразведочных работ, бурении эксплуатационных скважин, обустройстве промыслов и т. д.

Исследования, связанные с выявлением условий образования нефти и углеводородных газов, необходимо проводить еще в одном направлении - изучении распределения углеводородных газов, растворенных в подземных водах.

По подсчетам многих специалистов, количество таких газов поистине огромно, исчисляется сотнями триллионов кубических метров. Так, только в Западной Сибири в подземных водах растворено на два порядка больше углеводородных газов, чем их содержится в залежах. Совершенно очевидно, что по мере завершения разработки газовых месторождений возникнет потребность в извлечении и растворенных в воде газов. Правда, пока еще не разработан достаточно экономичный метод извлечения этих газов, хотя в небольших количествах они добывались в Японии и некоторых других странах.

Можно не сомневаться в том, что в случае необходимости такой метод будет разработан, и растворенные в воде газы станут такими же полезными ископаемыми, как и газы газовых месторождений. Следовательно, уже сейчас необходимо достаточно уверенно установить закономерности распространения таких газов, условия их накопления, методы поисков, которые могут быть наиболее эффективными, лишь если условия их образования будут надежно теоретически обоснованы. Исходя из современной осадочно-миграционной теории, можно рассчитать, сколько и каких газов образовывалось на разных стадиях геологического развития той или иной теории или акватории и, располагая информацией о термодинамических условиях, определить, какая часть этих газов растворялась в подземных водах.

На газонасыщенность подземных вод влияет и их соленость, т. е. количество содержащихся в них солей: как правило, с увеличением солености вод количество содержащихся в них газов резко снижается. По этой причине для прогнозирования количества содержащихся в водах газов необходимо знать не только "историю" движения подземных вод, но и историю изменения их состава.

В настоящее время поисковые работы и разработка залежей нефти и газа ведутся только в пределах шельфа, на глубинах водных бассейнов до 100, редко до 150-200 м, хотя отдельные скажины пробурены и на глубине 1204 м (у берегов Суринама в 1977 году). Совершенно очевидно, что в ближайшее время возникнет необходимость в поисках нефти и газа и на других морфоструктурных элементах морского дна: континентальном склоне, континентальном подножии, внутриокеанических поднятиях и, вероятно, в последнюю очередь в глубоководных желобах. Прогноз нефтегазоносности таких частей акваторий возможен только на базе достаточно разработанной и хорошо апробированной теории, потому что, во-первых, в пределах перечисленных элементов морского дна еще не открыто ни одного месторождения, за исключением лишь участка Средиземного моря у берегов Испании, где при глубине дна 670 м был получен из скважины приток нефти дебитом 223 т/сут.

Во-вторых, с увеличением глубины водного бассейна сильно повышается стоимость бурения и оборудования, вследствие чего необходимо существенно повысить степень надежности прогнозирования. По указанным причинам требуется проведение дальнейших исследований условий накопления органического вещества, его преобразования в нефть и газ в пределах континентального склона, континентального подножия, внутриокеанических поднятий и глубоководных желобов.

Исследования, связанные с дальнейшим углублением теории происхождения нефти и газа, могут оказать существенную помощь при поисках не только этих, но и других полезных ископаемых, генетически или морфологически связанных с первыми.

Как отмечалось, в настоящее время нефть и газ не только являются источниками углеводородов, но и используются как сырье для получения содержащихся в них в виде примеси различных компонентов в промышленных количествах. Так, при очистке сернистых нефтей извлекаются значительные количества серы, столь необходимой промышленности и сельскому хозяйству. При значительных содержаниях в нефти практический интерес могут представлять и различные редкие элементы, такие как ванадий и др.

Вероятно, читателям известно о том, что сероводород из "вредной" примеси в природных газах превратился в весьма полезный компонент, извлечение которого приносит большую пользу народному хозяйству. Так, уже в настоящее время значительная часть потребности народного хозяйства нашей страны в сере покрывается за счет сероводорода, который извлекается с помощью нескольких заводов из газа Оренбургского месторождения и некоторых месторождений Средней Азии.

Особый интерес в этом отношении представляет залежь Астраханского месторождения, освоение которого предусмотрено в "Основных направлениях экономического и социального развития СССР на 1981 - 1985 годы и на период до 1990 года".

Вторым неуглеводородным компонентом природных газов, который при определенных содержаниях может представлять промышленный интерес, является гелий. Попутное извлечение этого весьма ценного и важного для народного хозяйства сырья из газов, добываемых для других целей, может дать огромный экономический эффект.

При определенных условиях могут представлять промышленный интерес и такие часто содержащиеся в природных газах в значительных количествах компоненты, как углекислый газ, азот и др. Промышленное применение углекислого газа весьма разнообразно - от газированной воды до искусственного льда. Что касается азота, то его использование в промышленности все расширяется, но особенно он необходим при производстве удобрений.

Совершенно очевидно, что достоверный прогноз о наличии в нефтях и газах перечисленных выше и других полезных компонентов возможен лишь в том случае, если будет определено, когда и как попадают они в нефть и природный газ, что неотделимо от определения механизма условий их образования. Поэтому дальнейшие теоретические разработки в области генезиса нефти и газа должны быть направлены на выявление реакций условий их развития, в результате которых в нефть и газ попадают различные неуглеводородные компоненты.

Уже давно было замечено, что с битуминозными породами и углеводородными газами ассоциируют месторождения рудных полезных ископаемых: урана, ртути, винца и др. Это связано с сорбционными свойствами битуминозных пород и со специфической геохимической обстановкой, создающейся в этих породах внутри и вокруг нефтяных и газовых месторождений, особенно во время их разрушения. Поэтому исследования необходимо направить на выявление геохимических и физико-химических условий скоплений битумов и формирования разрушения нефтяных и газовых месторождений. В наш космический век, когда стремительно развиваются исследования планет и других космических тел, необходимы прогнозы о возможности наличия жидких и

Газообразных углеводородов Ё их газовых оболочках и на поверхности. Это нужно для комплектования аналитических приборов в посылаемых на указанные объекты аппаратах, для выбора материалов, из которых должны изготавливаться подобные аппараты и в дальнейшем для определения мер защиты космонавтов.

Решение данной проблемы представляет также и научный интерес, поскольку оно должно объяснить наличие углеводородов в атмосфере некоторых планет, метеоритах и других космических телах и их связи с нефтью и залежами углеводородных газов на Земле. Для этого, очевидно, имеет смысл рассмотреть хотя бы в первом приближении круговорот в масштабе всей Вселенной химических элементов, образующих углеводороды (рис. 40).

Рис. 40. Общие циклы углерода и водорода во Вселенной
Рис. 40. Общие циклы углерода и водорода во Вселенной

Начнем с водорода. Как известно, это самый распространенный во Вселенной химический элемент, составляющий в виде плазмы более половины массы Солнца и большинства звезд, основную часть газов межзвездной среды и газовых туманностей, встречающийся в атмосферах ряда планет и в кометах как самостоятельно, так и в виде соединений с рядом элементов: углеродом, азотом, кислородом, кремнием, фосфором и др. Водород участвует также в корпускулярном излучении Солнца и космических излучениях, в виде протонов образует внутренний радиационный пояс Земли. В земной коре этот элемент составляет 1 % по весу и 16 % по числу атомов. Круговорот водорода в природе образуется из "кругов" разных масштабов в пределах: 1) поверхности Земли и земной коры, 2) земного шара и всей Солнечной системы и 3) всей Вселенной.

Углерод по распространенности во Вселенной занимает четвертое место (по числу атомов). Число атомов этого элемента на три порядка меньше числа водородных атомов. Углерод составляет 0,04 % Земли в целом и 0,23 % земной коры. Среди всех химических элементов он выделяется исключительным разнообразием природных соединений, среди которых преобладают соединения органического происхождения. Число их видов исчисляется миллионами, они являются объектом исследований обширной самостоятельной ветви химических наук - органической химии. Число видов неорганических соединений углерода исчисляется сотнями: известно до 200 неорганических минералов углерода, в ток числе самородные формы (графит и алмаз) и весьма распространенные карбонаты. Круговорот углерода состоит из "кругов" разного масштаба. Во многих "точках" различных "кругов" углерод и водород "соприкасаются" друг с другом, в связи с чем имеются потенциальные возможности синтеза углеводородов, в том числе и их радикалов, которые неустойчивы на Земле. О реализации этих возможностей свидетельствуют и данные о наличии углеводородов в метеоритах типа "углистых хондритов", в атмосферах больших планет - Юпитера, Сатурна, Урана, Нептуна и их спутников, о наличии углеводородных радикалов в кометах, межзвездном газе, на Солнце и т. д.

Безусловно, имеющаяся информация о распространении углеводородов во Вселенной далеко не отражает их истинного распространения, и среди известных 1020 звезд, более 100 миллионов которых имеют сходство с нашим Солнцем, весьма вероятно развитие процессов синтеза углерода с водородом. Однако, исходя из законов химической термодинамики, можно ожидать, что это должны быть ряды углеводородов, отражающие условия синтеза, например резкое преобладание одного метана и т. п., они не должны обладать оптической активностью, среди них не могут встречаться порфирины, они должны быть обогащены тяжелым изотопом углерода 13С. И действительно, эти особенности характерны для органического вещества многих метеоритов, для углеводородов в атмосферах планет внешней части Солнечной системы и их спутников, для метана, занесенного солнечным ветром в поверхностный грунт Луны.

Таким образом, ни в космосе, ни на планетах и кометах нет типичных нефтей, которые известны в верхней части земной коры. Неизвестны также на указанных объектах и скопления углеводородных газов, аналогичные земным, содержащим большое число (более 150) других углеводородов. Однако не исключено, что, если а какой-нибудь планете какой-то звездной системы возникла жизнь, аналогичная земной, то в ее стратисфере могут быть залежи нефтей и углеводородных газов очевидно также, что теория осадочно-миграционного происхождения нефти и углеводородных газов является лишь частью общей теории образования углеводородов во Вселенной, подобно тому, как Ньютонова механики представляет лишь часть общей теории относительности. Теория осадочно-миграционного происхождения нефти и газа описывает образование этих ископаемых в специфических условиях - из веществ, синтезированных растительными и животными организмами. Именно благодаря процессам жизнедеятельности нефть и природные углеводородные газы отличаются наличием исключительно разнообразных химических соединений. С другой стороны, процессы нефте- и частично газообразования из захороненного в осадках органического вещества развиваются лишь при поступлении тепловой энергии Земли. Стало быть, нефть и большинство природных углеводородных газов являются аккумуляторами не только солнечной энергии благодаря процессам фотосинтеза, но также и тепловой энергии Земли.

Таким образом, в результате решения проблемы происхождения нефти и природных углеводородных газов возникли новые более широкие и глубокие проблемы. С одной стороны, необходимо все глубже и детальнее изучать сам процесс нефтегазообразования, чтобы выяснить, на какой его стадии, из какого органического вещества образуются все исходные для формирования залежей нефти и газа соединения и сколько их образуется? С другой стороны, необходимо расширять исследование теплового баланса Земли и обусловливающих его факторов, поскольку тепловой режим недр разных участков Земли является результатом сложного влияния тепловой энергии Солнца и глубинных зон Земли.

Наконец, целесообразно углублять исследования "круговоротов" углерода и водорода и синтеза этих элементов в разных масштабах, захватывая сначала ближний космос и Солнечную систему, а затем постепенно расширяя исследования на дальний космос.

предыдущая главасодержаниеследующая глава











© CHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://chemlib.ru/ 'Библиотека по химии'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь