Полимеризация - один из двух основных (наряду с поликонденсацией) процессов образования полимеров. Характерные особенности этой реакции в том, что прежде всего вступают в нее только мономеры, содержащие в молекуле двойную связь C=C, C=N или С=O, тройную связь либо циклическую группировку, способную раскрываться. Для того чтобы мономер вступил в реакцию полимеризации, к нему надо добавить (или создать в его среде) инициирующий активный центр: свободный радикал, активный ион или активный координационный комплекс. И наконец, третья специфическая особенность реакций полимеризации состоит в том, что присоединение молекул мономера к активному центру происходит медленнее, чем последующее наращивание полимерной цепи присоединением молекул мономера друг к другу. В результате после введения активных центров в массу мономера, прервав реакцию в любой момент, можно найти там большее или меньшее количество непрореагировавшего мономера и какое-то количество высокомолекулярного полимера. Выделить из такой смеси ди-, три-, тетрамеры и прочие промежуточные продукты полимеризации обычно невозможно - их нет. Такие процессы называются цепными реакциями.
Хотя впервые полимеризация была описана еще в XIX в. как побочный процесс смолообразования при выделении некоторых органических веществ (стирола, формальдегида и др.), теоретическое объяснение ее механизма стало возможно лишь в 30-х гг. нашего столетия, на основе созданной советским академиком Н. Н. Семеновым и английским ученым С. Хиншелвудом теории цепных процессов.
Есть и еще одно отличие полимеризации от поликонденсации: обычно полимеризационным путем получают полимеры из мономеров, содержащих лишь одну реакционноспособную группу: одну С=С связь, одну С=0 группу и т.д. Типичные примеры - химические синтезы полиэтилена и полиформальдегида:
A + nH2C = CH2→ A - [-СН2 -CH2 -]n - ...
А + nН2С = O - → А - [-СН2- О -]n ...
где А-инициирующий активный центр, а n-число мономерных звеньев, образующих макромолекулу (обычно превышает несколько тысяч).
Для каждого мономера химикам приходится подбирать специальные инициирующие активные агенты: перекисные соединения, окислительно-восстановительные катализаторы и т.д., определять условия проведения процесса: в массе мономера, в растворе, в эмульсии, в газовой фазе, в монокристаллах и т.д. При этом концентрации инициирующих веществ обычно ничтожно малы - сотые доли процента, а условия могут очень резко отличаться друг от друга - от глубокого вакуума до давления в тысячи атмосфер, от температуры жидкого гелия - 272,1С (твердофазная полимеризация формальдегида) до 4-200-300°С (полимеризация этилена при высоком давлении) и т.д.
Сейчас синтетические полимеры, выпускаемые в мире, примерно на 75% состоят из продуктов полимеризации. Применяются они в строительстве и радиоэлектронике, машиностроении и производстве бытовых изделий.
Химические формулы синтетических полимеров обычно записывают, приводя в квадратных скобках химическую структуру повторяющегося звена, например: полистирол: [-СН2 - СН(С6Н5)-]n; поливинилхлорид: [СН2 - СНСl]n; полиизопрен: [-СН2 - СН = С(СН3) - СН2 -]n, и при этом не указывают, что же стоит на концах цепи. На одном конце, как ясно из сказанного выше, стоит остаток инициировавшего активного центра. А на другом? Оказывается, туда попала какая-то примесь, которая оборвала процесс роста полимерной цепи. Химики выяснили, что чем чище исходный мономер, тем длиннее цепи, тем больше число мономерных звеньев, тем выше качество полимеров. Очевидно, в этом состоит четвертая специфическая особенность реакции полимеризации: она очень чувствительна к чистоте мономера, требует высокой культуры производства.