Новости    Библиотека    Таблица эл-тов    Биографии    Карта сайтов    Ссылки    О сайте


предыдущая главасодержаниеследующая глава

Контактный способ

Наряду с английской "камерной" кислотой существовала также более концентрированная "саксонская" кислота, или олеум (дымящая концентрированная серная кислота). В начале XIX в. в сернокислотном производстве самой крупной была фирма Иоганна Давида Штарка из Богемии, которая располагала обширными и географически выгодно расположенными месторождениями купороса и до конца XIX в. была в состоянии полностью удовлетворять потребности промышленности в концентрированной серной кислоте.

Производство серной кислоты камерных (А) и контактным (Б) способами (Брокгауз, 1929 г.). А: 1 - печь для обжига колчедана; 2 - камера для очистки газов от пыли; 3 - башня Гловера; 4, 5 - свинцовые камеры; 6 - башни Гей-Люссака; 7-10 - автоклавы; Б: 1 - печь для обжига колчедана; 2 - камера для очистки газов от пыли; 3 - башня для охлаждения газов; 4 - скруббер; 5 - осушительная башня; 6 - насосы; 7 - печь для предварительного обогрева; 8 - контактный аппарат; 9 - поглотительная башня; 10 - резервуар для серной кислоты
Производство серной кислоты камерных (А) и контактным (Б) способами (Брокгауз, 1929 г.). А: 1 - печь для обжига колчедана; 2 - камера для очистки газов от пыли; 3 - башня Гловера; 4, 5 - свинцовые камеры; 6 - башни Гей-Люссака; 7-10 - автоклавы; Б: 1 - печь для обжига колчедана; 2 - камера для очистки газов от пыли; 3 - башня для охлаждения газов; 4 - скруббер; 5 - осушительная башня; 6 - насосы; 7 - печь для предварительного обогрева; 8 - контактный аппарат; 9 - поглотительная башня; 10 - резервуар для серной кислоты

Тем не менее уже в течение десятков лет в XIX в. химики искали новые способы получения дымящей серной кислоты. Так, в 1831 г. Перегрин Филипс наблюдал, что диоксид серы мгновенно реагирует с кислородом воздуха, если оба эти газа в соответствующих соотношениях пропускать с помощью воздухонагнетателя через раскаленную трубку из платины, фарфора или другого материала, устойчивого к действию горячего серного ангидрида. Необходимо было только, чтобы в трубке находилась платиновая проволока или маленькие кусочки платины. Образующийся при этом триоксид серы поглощался затем в обшитой свинцом и наполненной шамотом башне, в которой сверху вниз стекала вода.

В лабораторных условиях этот синтез хорошо осуществлялся. Однако попытки провести его в большем масштабе оканчивались неудачей. Кроме того, метод был сложен и дорог и поэтому казался не пригодным для промышленного производства. Несмотря на это, постоянно проводились все новые и новые работы по его совершенствованию. В качестве катализаторов химики испытывали разнообразные контактные массы из платинированного асбеста и пемзы, раскаленные фарфоровые трубки, кремневую кислоту, оксиды меди, железа и другие вещества. Но все было напрасно. Правда, таким образом накапливались данные о природе катализаторов и их свойствах. Было замечено, что некоторые вещества заметно ускоряют взаимодействие диоксида серы с кислородом, однако этот процесс очень быстро останавливался, так что большие технические сооружения могли оказаться нерентабельными*.

* (Подробнее это описано в книге [266, с. 126-134].- Прим. ред.)

Во второй половине XIX в. потребность в дымящей серной кислоте резко возросла. В 1868 г. Карл Гребе и Карл Либерман открыли синтетический метод получения ализарина из ант-рахинон-2-сульфоновой кислоты; тремя годами позднее Генрих Каро синтезировал красные азокрасители. В это же время стало развиваться производство синтетических красителей, а для проектируемых в большом количестве фабрик понадобилось очень много серного ангидрида. Можно было предвидеть, что если эта потребность в олеуме не сможет быть удовлетворена, то по сравнению с традиционными природными красителями синтетические красители не будут иметь никаких преимуществ.

В 1875 г. К. Винклер, применив в качестве катализатора платину, обнаружил, что действие катализатора зависит от степени разбавления газов. Так, из смеси чистого диоксида серы с кислородом он сумел перевести в триоксид серы 73,3% диоксида серы, из смеси чистого диоксида серы с воздухом - только 47,4% , а из смеси неочищенного диоксида серы с воздухом - всего 11,5% диоксида серы. Отсюда он сделал вывод, что действие платинированного асбеста и других катализаторов ослабляется при разбавлении диоксида серы другими индифферентными газами. Такое разбавление возникает также в случае, если диоксид серы и кислород взяты не в стехио-метрических количествах. Поэтому для получения хороших выходов продукта необходимо вводить в реакции стехио-метрические количества исходных веществ.

Клеменс Винклер (1838-1904)
Клеменс Винклер (1838-1904)

Этот вывод на первый взгляд противоречил закону действия масс, который был сформулирован Като Максимилианом Гульдбергом и Петером Вааге в 1867 г., т.е. еще до открытия Винклера*. Тем не менее данные Винклера легли в основу технологических испытаний: 60%-ную "камерную" кислоту разлагали термическим способом на диоксид серы, кислород и водяной пар и осушенную газовую смесь пропускали над нагретым платинированным асбестом. Выходы серной кислоты, получаемые на заводе, с 1877 г. применявшего метод Винклера, были невелики, и лишь высокие цены на концентрированную серную кислоту оправдывали существование этого завода.

* (На самом деле при этом происходят иные химические превращения, о чем во времена К. Винклера еще не знали.- Прим. ред.)

В 90-е годы Рудольф Книч под руководством Генриха фон Брунка, директора фирмы БАСФ ("Баденские анилиновые и содовые фабрики"), разработал рентабельный метод получения серной кислоты.

Рудольф Книч родился в 1854 г. в Оппельне, умер в 1906 г. в Людвигсхафене*. Учился он в Шлоссерберуфе и сумел выработать в себе упорство и терпение - самые характерные черты его личности. Позднее Книч учился в ремесленной школе в Гливице, а с 1876 г. изучал химию в Берлине. В течение двух лет (1880-1882 гг.) Книч работал химиком на заводе в Гёрлице, а затем два года - на химическом заводе в Базеле. Книч был трудным в общении человеком, и поэтому базельский фабрикант был рад, когда в 1884 г. он перешел на службу в БАСФ. В то время директором БАСФ был Г. фон Брунк, обладавший широким химическим кругозором и хорошо разбиравшийся в людях. Он увидел в Книче человека, способного к кропотливому труду, талантливого и неутомимого исследователя.

Первой решенной Кничем проблемой было получение жидкого хлора. Затем Брунк поручил ему разработку рентабельного способа получения концентрированной серной кислоты и всячески помогал ему в этом. Упорный и настойчивый труд в течение 14 лет привел к результату, который превзошел все ожидания.

* (О биографии Книча см. также в [180, с. 337-340].- Прим. ред.)

Книч провел большую работу по определению оптимальных условий процесса получения серной кислоты контактным способом. Он обнаружил, что при стехиометрических соотношениях диоксида серы и кислорода выходы продукта не соответствуют выводам, сделанным Винклером. Совсем напротив, эти выходы заметно увеличивались при повышении в смеси содержания кислорода (или воздуха).

Серный ангидрид Книч получал из газов обжига, содержащих диоксид серы, сильно загрязненный различными примесями. Книч пропускал газы обжига через длинные свинцовые трубы, чтобы пыль и зола оседали в них и не отравляли используемый платиновый катализатор. Несколько дней аппараты работали хорошо, выходы составляли около 75% , но затем образование серного ангидрида (триоксида серы) неожиданно прекращалось из-за загрязнения платинового катализатора. Поэтому Книч стал проводить еще более тщательную очистку газов обжига, пропуская их через угольные и асбестовые фильтры, однако и это не предотвращало загрязнения катализатора. Незначительные количества каких-то веществ отравляли катализатор. Книч с сотрудниками обнаружили, что это были следы мышьяка. Мельчайшие количества мышьяка попадали на катализатор из газов обжига, так что нужно было последние еще тщательнее очищать. С "обезвреженными" газами обжига реакция протекала лучше. Однако через несколько дней платиновые катализаторы вновь оказывались отравленными мышьяком. В поисках источника мышьяковистых загрязнений по железным отводным трубам отбирали небольшие количества серной кислоты. Вначале в этих пробах находили следы мышьяковистого водорода, но после того, как удалось полностью избавиться и от этих количеств мышьяка, катализатор больше не отравлялся.

Тем не менее выходы триоксида серы были мало удовлетворительными. Было высказано предположение, что взаимодействие диоксида серы с кислородом происходит тем полнее, чем выше температура реакционной смеси. Поэтому Книч предложил нагревать трубы с катализатором до 800° С. Однако затем он обнаружил, что выходы триоксида серы значительно повышались, если трубы охлаждались остывшими обжиговыми газами. В результате многочисленных опытов Книч наконец установил наиболее оптимальную температуру реакций: лучше всего катализатор (платина) работал при 450° С. Кроме того, Кничу удалось установить наиболее оптимальное время контактирования газа с катализатором.

К началу XX столетия благодаря разработке контактного метода получения серной кислоты концерн БАСФ обладал наиболее развитыми и совершенными в научно-техническом отношении производственными мощностями по получению этого вида продукта.

Установка по производству серной кислоты контактным способом (начало ХХ в.)
Установка по производству серной кислоты контактным способом (начало ХХ в.)

Первая стадия контактного метода была такой же, как и в камерном процессе: размельчение и обжиг серусодержащей руды. Затем проводилась очень тщательная очистка обжигового газа в пылепоглотительных камерах (причем начиная с 1906 г. поток газа пропускали через поле постоянного тока высокого напряжения, проводя таким образом электрофильтрацию). Очищенные таким образом газы направлялись через скруббер (промыватель) в сушильную башню и оттуда в башню предварительного подогрева, где они нагревались до температуры 420-445° С. В последней башне диоксид серы пропускался над решетчатым платиновым фильтром, где он окислялся до триоксида серы: 2SO2 + O2 = 2SO3. Триоксид серы охлаждался до 40-60° С и попадал в поглотительные башни, наполненные 98% -ной серной кислотой, при этом получалась "дымящая" серная кислота, которая собиралась в специальных башнях или других емкостях. Производственный процесс протекал таким образом непрерывно в течение многих лет. Он был, разумеется, сложнее, чем описанная нами упрощенная схема. Газы обжига в зависимости от используемого исходного сырья имели различный состав, а количество газа было очень велико. Установки имели очень большие размеры и были дорогостоящими, а при длительном простое или во время опытов легко разрушались.

В начале XX в. для получения триоксида серы в производстве серной кислоты чаще всего использовался контактный метод. В 1912 г. 60% количества серной кислоты получали по такому "ангидридному" методу*. В результате цена на серную кислоту снизилась, и немецкая анилинокрасочная промышленность (особенно производство индиго, ализарина и азокрасителей), нуждавшаяся в больших количествах серной кислоты с высоким содержанием ангидрида, могла теперь получать любые нужные ей количества кислоты и одерживать победы на международном рынке.

* (В этом названии подчеркивается, что с помощью катализатора в начале получается сернистый ангидрид (диоксид серы), а затем серный ангидрид (триоксид серы).- Прим. ред.)

Данные Книча об использовании катализаторов в контактном методе очень пригодились Ф. Габеру и К. Бошу, которые работали на опытных установках, изучая взаимодействие азота воздуха с водородом для получения синтетического аммиака. Им удалось осуществить эту реакцию в 1903 г. (см. ниже).

предыдущая главасодержаниеследующая глава











© CHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://chemlib.ru/ 'Библиотека по химии'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь