Новости    Библиотека    Таблица эл-тов    Биографии    Карта сайтов    Ссылки    О сайте


предыдущая главасодержаниеследующая глава

"Сезам, отворись"

Как все просто у героя арабских сказок Али-Бабы! Таинственное заклинание "Сезам, отворись!" он услышал случайно. Стоило его произнести, и перед ним открылись двери пещеры, полной несметных сокровищ. Увы, современному исследователю приходится проделать многолетнюю, трудоемкую, часто утомительную работу, чтобы докопаться до зерна истины. Путь к сокровищницам знаний затягивается на десятилетия... Исследование химической природы простагландинов, к сожалению, не является исключением из общего правила.

Существует парадокс. Если исследователь знает о каком-то явлении природы очень мало, оно нередко кажется ему бесперспективным для изучения. Накопился ряд интересных наблюдений, требующих объяснения. Прежние позиции пересматриваются, наступает период бурного изучения фактов. В это время значимость наблюдаемых явлений нередко переоценивают. Наконец биохимическая жизнь входит в берега, и все становится на свои места.

Такую эволюцию претерпели и наши представления о липидах.

В повседневной жизни мы имеем с ними дело постоянно: ведь липиды непременная составная часть нашей пищи. Но в быту их называют не липиды, а жиры, или масла.

Химики дают липидам довольно-таки точное определение. Липиды, говорят они,- это нерастворимые в воде составные части живой клетки, которые могут быть удалены из нее такими растворителями, как хлороформ, эфир, бензол...

Так вот, совсем еще недавно биохимия липидов считалась скучноватой и запутанной областью. Но за последнее десятилетие отношение к ним резко изменилось. Липидная проблема стала одной из центральных в современной биохимии. И вот почему.

Липиды входят в состав многочисленных полупроницаемых оболочек всех клеток организма, или, как говорят биологи, мембран. Об их строении мы уже говорили, когда рассказывали о сложном процессе образования энергии в живом организме. Без мембран существование жизни невозможно.

Липиды - резервы потенциального горючего. Достаточно вспомнить, что у всех животных перёд зимней спячкой откладываются солидные запасы жира. Наконец, многие органические вещества, обладающие свойствами липидов, являются биологически очень активными соединениями. Например, некоторые витамины или гормоны.

К липидам относятся также химические соединения, название которых для неспециалистов кажется необычным,- жирные кислоты. Кислотами их называют потому, что они обладают кислотными свойствами, а жирными - потому что входят в состав ряда жиров.

Если бы химическую терминологию пришлось создавать заново, то, конечно, можно было бы придумать для них более точное название. Но ведь рождение слов - процесс исторический, а химическая терминология всегда связана с развитием самой химии, Ничего не поделаешь, приходится мириться в терминологией, которая складывалась веками...

Для жирных кислот существует точное химическое определение. Их молекула представляет собой длинную углеводородную цепь, на конце которой всегда находится кислотная, или, как говорят химики, карбоксильная группировка. Жирные кислоты - это строительные блоки, которые постоянно входят в состав различных липидов. В клетках их обычно мало. Но в биохимии эта особенность ровным счетом ни о чем не говорит. Значительно чаще специалисты встречаются с противоположным явлением: присутствующее в клетке в ничтожных количествах химическое соединение играет огромную биологическую роль. Одним словом, как в старой пословице: мал золотник, да дорог!

'Сезам, отворись'
'Сезам, отворись'

Жирных кислот великое множество. Из клеток и тканей животных, растений и бактерий было выделено не менее 70 различных жирных кислот! Жирные кислоты, которые находят в клетках млекопитающих и высших растений, почти всегда содержат четное число атомов углерода, от 14 до 22. В свою очередь, в этой компании наиболее часто встречаются жирные кислоты, у которых 16 или 18 атомов углерода. В чем тут дело, до настоящего времени ничего толком не известно. Но, во всяком случае, это явление неслучайное. Вероятнее всего, химические соединения с таким числом углеродных атомов являются наиболее "удобными" для клеток. Какие физико-химические процессы лежат в основе такого "удобства", пока, увы, неясно.

Если в длинной углеродной цепи есть двойная или тройная химическая связь между соседними углеродными атомами, то про такую жирную кислоту говорят, что она ненасыщенная. Если же все связи между атомами углерода одинарные, то имеют дело с насыщенными жирными кислотами. Двойная или тройная связь между атомами углерода - связь с высокой способностью к реакции. Поэтому ненасыщенные жирные кислоты легко участвуют в реакциях присоединения по месту этой двойной или тройной связи.

Разговор о липидах и жирных кислотах ведется вот почему. Простагландины относятся как раз к липидам, а жирные кислоты имеют прямое отношение к их происхождению.

Любопытная деталь - изучение простагландинов настолько новая область естествознания, что во многих учебниках по биохимии этому классу биологически активных соединений отведено несколько скупых строчек или вообще о них не сказано ни слова. Например, в широкоизвестном учебнике по биологической химии, написанном крупным американским ученым и педагогом А. Ленинджером и опубликованном в 1972 году, простагландинам посвящено всего двенадцать строк.

Когда-то в незапамятные времена в процессе эволюции ненасыщенные жирные кислоты претерпели очень своеобразное превращение: длинную, вытянутую, как палка, молекулу жирной кислоты словно согнули пополам по самой середине. И не только согнули, но даже завязали узелком на память. В месте перегиба прямолинейная углеродная цепочка замкнулась и образовала кольцо, а точнее, пятичленный цикл. Получилась молекула простагландина, обладающая принципиально новыми качествами. Молекула чем-то напоминает первый искусственный спутник Земли: пятичленный цикл похож на сам спутник, а два конца углеродной цепочки - на длинные "усы" этого спутника.

Сегодня ученым известно около 20 простагландинов. На первый взгляд все они похожи один на другой. Однако, казалось бы, незначительная разница в строении придает каждому из них характерные индивидуальные свойства.

Чтобы облегчить общение с довольно-таки большой компанией простагландинов, их разделили на четыре основные группы и каждой присвоили свою букву латинского шрифта: Е, А, В, F. Все они различаются друг от друга особенностями строения пятичленного цикла, а точнее, положением двойной связи и наличием разных химических группировок. Молекула простагландинов не плоская, как лист писчей бумаги: она объемна, трехмерна.

Изучение строения простагландинов в известном смысле прошло классический путь развития: сначала заметили, что какие-то вещества необычного химического строения обладают способностью вызывать определенные ответные биологические реакции, и только потом определили, что это такое. Как и полагается для классического пути, завершал исследование искусственный синтез природного химического соединения. Очень хорошие работы по синтезу простагландинов могли быть выполнены только при условии эффективного контроля за пространственным расположением химических группировок во вновь синтезируемых соединениях. Именно этот контроль позволил талантливому американскому исследователю Э. Кори и его сотрудникам получить ряд природных простагландинов.

'Сезам, отворись'
'Сезам, отворись'

Наступает, по-видимому, последний этап в изучении тонкого строения этих веществ. Экспериментаторы работают над тем, чтобы "улучшить" молекулу этого биологически активного вещества и "дополнить" творчество матери-природы, найти еще более эффективные и удобные для использования простагландины.

предыдущая главасодержаниеследующая глава











© CHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://chemlib.ru/ 'Библиотека по химии'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь