Новости
Библиотека
Таблица эл-тов
Биографии
Карта сайтов
Ссылки
О сайте


Пользовательского поиска




27.06.2017

Химики синтезировали новый смешанный углерод

Важным направлением современного материаловедения выступает разработка прочных, но легких материалов, например, для изготовления защитных военных конструкций (бронежилетов, обшивки). Сейчас с этой целью, как правило, используются металлы и высокотехнологичная керамика — их предел текучести и предел прочности достигают двух и девяти гигапаскаль соотвественно. Однако эти материалы отличаются громоздкостью. В качестве альтернативы рассматриваются производные углерода: за счет многообразия модификаций это соединение позволяет комбинировать значения таких параметров, как эластичность, твердость и масса.

Химики синтезировали новый смешанный углерод
Химики синтезировали новый смешанный углерод

Разные формы углерода определяются гибридизацией орбиталей (s, p, d, f) центрального атома в молекуле: их смешение обусловливает расположение и особенности ковалентных связей, и, как следствие, свойства материала. Например, к формам углерода с sp2-гибридизацией относятся гибкие углеродные нанотрубки и графен, а с sp3-гибридизацией — твердые алмаз и лонсдейлит. В новой работе специалисты из Яньшаньского университета и других учреждений представили результат комбинирования состояний гибридизации. Для этого они использовали стеклоуглерод — твердый материал из sp2-гибридизированных орбиталей, которые формируют неупорядоченно расположенные шестиугольники.

Чтобы изменить кристаллическую решетку, образцы стеклоуглерода нагревали до 1100 градусов Цельсия и подвергали давлению в размере до 25 гигапаскаль (порядка 247 тысяч атмосфер). Последующий анализ показал, что при определенных условиях материал приобретал графеноподобную форму, при этом некоторые орбитали в ней имели sp3-гибридизацию. Число таких атомов достигало 22±5, возрастая с повышением температуры. На небольших масштабах просвечивающая электронная микроскопия (ПЭМ) позволяла наблюдать в конечной структуре sp3-гибридизированные области, «сшивающие» листы графена. Тем не менее, в масштабах целого образца она была неупорядочена.

Изображение (A) и топологическая модель (B) структуры новой формы углерода
Изображение (A) и топологическая модель (B) структуры новой формы углерода

По словам авторов, полученный материал обладает высокими эластичностью, твердостью на вдавливание и прочностью на сжатие и после локальных деформаций восстанавливает структуру. В сочетании с небольшой массой и толщиной это значительно расширяет потенциальные сферы его приложений. Между тем, ранее другая группа исследователей представила технологию модулирования смачиваемости графеноподобных структур. Изучение смачиваемости и поиск способов ее модуляции важны для многих отраслей, в том числе промышленности и медицины. Наименее воспроизводимым остается «переключение» показателя в одном материале.

Статья опубликована в журнале Science Advances.

Денис Стригун


Источники:

  1. naked-science.ru



ИНТЕРЕСНО:

Новый метод анализа белков работает в 50 раз быстрее

Создана первая «химическая память» объемом в 1 бит

193 года назад впервые получено органическое соединение из неорганических

Ученые разработали программу, которая высчитывает свойства молекул сложных химических соединений

Самосборкой получены структуры из 144 молекулярных компонентов

Учёные создали нанореактор для производства водорода

Ученые из Швеции создали «деревянное стекло»

Разработан новый метод создания молекул

Японские ученые создали жидкий квазиметалл, застывающий на свету

Нобелевскую премию по химии присудили за синтез молекулярных машин

Новая компьютерная программа предсказывает химические связи

Получены цветные изображения на электронном микроскопе

В упавшем в России метеорите обнаружен уникальный квазикристалл

10 невероятно опасных химических веществ

Создатель «суперклея» Гарри Кувер – химик и изобретатель, автор 460 патентов, самый известный из которых так и не помог ему разбогатеть




© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://chemlib.ru/ 'ChemLib.ru: Библиотека по химии'