Новости
Библиотека
Таблица эл-тов
Биографии
Карта сайтов
Ссылки
О сайте


Пользовательского поиска




06.07.2017

Новый путь к водородному топливу

Водород – один из лучших альтернативных источников энергии. При его сгорании образуется водяной пар, так что он не вредит экологической обстановке. Кроме того, коэффициент полезного действия водородного топлива (> 45%), что гораздо выше, чем у бензинового или дизельного (<35%). Крупные автомобильные компании, такие как, например, Toyota, Honda и BMW, уже производят автомобили на водородном топливе, однако в ограниченных масштабах. Производство водорода все еще является затратным, в том числе и по электроэнергии. Поэтому ученые ищут способ получения водорода с помощью другого энергетического источника.

Новый путь к водородному топливу
Новый путь к водородному топливу

Исследовательская группа из США при участии ученых из Московского физико-технического института собрала нанобиоконструкцию, которая под действием света производит водород из воды. Специалисты синтезировали нанодиски – круглые кусочки мембраны, состоящие из двойного слоя липидов – со встроенным светочувствительным белком и соединили их с частицами фотокатализатора оксида титана TiO2. Результаты опубликованы в журнале ACS Nano, кратко о них рассказывается в пресс-релизе МФТИ.

Берем от природы

Водород можно получить из воды с помощью солнечной энергии. Для этого необходимо присутствие специального вещества – фотокатализатора. Наиболее распространенным фотокатализатором является TiO2. Сам по себе он недостаточно эффективен, поэтому ученые придумывают разные ухищрения: добавляют примеси, измельчают фотокатализатор до наночастиц и т. д. В Аргоннской национальной лаборатории (США) исследователи обратились к биологии и собрали наноконструкцию из TiO2 и белка бактериородопсина. Эти светочувствительные компоненты усиливают действие друг друга и образуют новую систему, функциональность которой намного превосходит набор свойств всех ее частей.

Бактериородопсин – светочувствительный белок, находящийся в мембране некоторых бактерий. (Вообще таких белков достаточно много, в данном случае использовался белок бактерии Halobacterium salinarium). Одна часть белка выходит наружу клетки, а другая — внутрь клетки. Под действием солнечного света бактериородопсин начинает качать протоны из клетки в окружающую среду, что обеспечивает производство энергии в бактериальной клетке в виде АТФ. Заметим, что человек в сутки синтезирует около 70 кг АТФ.

Н+ – протон. АТФ – молекула энергии. АТФ-синтаза производит АТФ с помощью энергии протонов. Серым цветом обозначены липиды
Н+ – протон. АТФ – молекула энергии. АТФ-синтаза производит АТФ с помощью энергии протонов. Серым цветом обозначены липиды

Нанодиски

Современные технологии позволяют синтезировать жизнь «в пробирке» - без участия живых клеток. Для создания мембранных белков в искусственных условиях используют различные мембрано-моделирующие среды, в частности, нанодиски. Нанодиск – это кусочек мембраны, собранный из фосфолипидов и опоясанный двумя молекулами специального белка. Размер диска зависит от длины этих белковых ремней. Мембранный белок, каковым является бактериородопсин, будет «чувствовать» себя в нанодиске как дома, в родной мембране, и сохранять свою естественную структуру. Эти чудо-конструкции используются для изучения структуры мембранных белков, для разработки лекарственных форм, и вот теперь их приспособили для фотокатализа. С помощью экспертов из МФТИ исследователи получили нанодиски диаметром 10 нанометров со встроенным бактериородопсином.

Липидный нанодиск
Липидный нанодиск

Профессор МФТИ, доктор химических наук и руководитель лаборатории химии и физики липидов Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ Владимир Чупин замечает: «Наши лаборатории, которые занимаются мембранными белками и, в частности, нанодисками, в основном ориентированы на биофизические, медицинские проблемы. Но вот недавняя работа с нашими американскими коллегами показывает, что если соединить биологические и технические материалы, нанодиски можно использовать и для выделения водородного топлива».

Получился водород

Нанодиски замешивали в водном растворе вместе с частицами TiO2 с платиновыми вкраплениями для большего эффекта (не для роскоши, а для фотокатализа). За ночь они сами прикрепились друг к другу. В данном случае бактериородопсин выполнял несколько функций. Во-первых, он был антенной, которая собирает свет и передает энергию TiO2, усиливая его фоточувствительность. Во-вторых, он переносил протоны, которые восстанавливались до водорода посредством платинового катализатора. Так как на восстановление затрачиваются электроны, ученые добавили в воду немного метилового спирта в качестве источника электронов. Смесь сначала поместили под зеленый свет, а потом — под белый. Во втором случае водорода получилось примерно в 74 раза больше. В среднем почти постоянное выделение водорода наблюдалось по меньшей мере 2–3 часа.

Раньше уже проводились опыты с подобной конструкцией, но там использовали натуральный бактериородопсин в натуральной мембране. Нанодиски попробовали впервые, и оказалось, что при их применении водорода выделяется столько же или даже больше, но при этом на такое же количество частиц TiO2 требуется меньше бактериородопсина. Ученые предположили, что это связано с тем, что нанодиски строго одинаковые по размеру и компактные, что позволяет им образовать больше связок. Хотя сейчас дешевле использовать натуральный бактериородопсин, возможно, развивающиеся методы синтеза жизни «в пробирке» вскоре сделают применение нанодисков более целесообразным.


Источники:

  1. polit.ru



ИНТЕРЕСНО:

Новый метод анализа белков работает в 50 раз быстрее

Создана первая «химическая память» объемом в 1 бит

193 года назад впервые получено органическое соединение из неорганических

Ученые разработали программу, которая высчитывает свойства молекул сложных химических соединений

Самосборкой получены структуры из 144 молекулярных компонентов

Учёные создали нанореактор для производства водорода

Ученые из Швеции создали «деревянное стекло»

Разработан новый метод создания молекул

Японские ученые создали жидкий квазиметалл, застывающий на свету

Нобелевскую премию по химии присудили за синтез молекулярных машин

Новая компьютерная программа предсказывает химические связи

Получены цветные изображения на электронном микроскопе

В упавшем в России метеорите обнаружен уникальный квазикристалл

10 невероятно опасных химических веществ

Создатель «суперклея» Гарри Кувер – химик и изобретатель, автор 460 патентов, самый известный из которых так и не помог ему разбогатеть




© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2017
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://chemlib.ru/ 'ChemLib.ru: Библиотека по химии'