Новости    Библиотека    Таблица эл-тов    Биографии    Карта сайтов    Ссылки    О сайте


предыдущая главасодержаниеследующая глава

Сложные белки - протеиды

Как уже было отмечено, сложные белки состоят из белковой части и небелковой - простетической группы, которая может быть представлена различными соединениями. Название протеидов зависит от названия простетической группы. К сложным белкам относятся: нуклеопротеиды, небелковая часть которых представлена нуклеиновыми кислотами; хромопротеиды - сложные белки, простетическая группа которых является окрашенным соединением, фосфопротеиды, имеющие в своем составе остатки фосфорных кислот; липопротеиды и глюкопротеиды Простетическими группами последних являются соответственно жиры и углеводы.

Нуклеопротеиды

Значение этого класса протеидов трудно переоценить, потому что они входят во все клетки организма и выполняют основные жизненные функции - являются носителями генетической информации и участвуют в биосинтезе белка. Белковая часть нуклеопротеидов представлена в основном протаминами и гистонами. Небелковая часть - это рибо- и дезоксирибонуклеиновые кислоты. Строение нуклеопротеидов представлено на следующей схеме:

Схема 1
Схема 1

Нуклеопротеиды - это соединения с высоким молекулярным весом - от 25 000 до 1 000 000 и выше, состоящие из огромного числа мономеров - мононуклеотидов. Последние состоят из азотистых оснований, пентоз и остатка фосфорной кислоты.

Из пентоз в мононуклеотидах представлены рибоза и дезоксирибоза:


Азотистые основания являются производными пуринов или пиримидинов.

К пуриновым основаниям относятся аденин - 6-амино-пурин и гуанин - 2-амино-6-оксипурин.


Из пиримидиновых оснований в нуклеиновые кислоты входят урацил - 2,6-диоксипиримидин, тимин - 5-метилурацил и цитозин - 2-окси-6-аминопиримидин.


Эти соединения могут находиться как в кетонной, так и в энольной формах. В составе нуклеиновых кислот пиримидиновые основания представлены только кетонной формой.


Таким образом, мононуклеотид имеет следующую структуру:

Адениловая кислота (аденозинмонофосфорная кислота)
Адениловая кислота (аденозинмонофосфорная кислота)

Уридиловая кислота (урицинмонофосфорная кислота)
Уридиловая кислота (урицинмонофосфорная кислота)

Мононуклеотиды могут содержать в своем составе 1, 2 или 3 остатка фосфорной кислоты. Например, аденозинмоно-, ди- и трифосфорные кислоты, которые обозначаются как АМФ, АДФ, АТФ.

Аденозинтрифосфорная кислота (АТФ)
Аденозинтрифосфорная кислота (АТФ)

Трифосфорные кислоты этих азотистых оснований играют в организме очень большую роль, так как они являются гак называемыми макроэргическими соединениями - соединениями, богатыми энергией. Как установлено, в молекуле макроэргических соединений, например АТФ, энергия сосредоточена в химической связи между третьим остатком фосфорной кислоты и остальной частью молекулы АТФ. Эта связь называется макроэргической связью и обозначается значком ~. При распаде АТФ на АДФ и Н3РО4 выделяется энергия, которая была заключена в этой связи, примерно 8-10 ккал. Соответственно этому для синтеза АТФ, кроме АДФ и фосфорной кислоты, необходимо аналогичное количество энергии. Механизм действия других макроэргических соединений одинаков с рассмотренным

Мононуклеотиды, входящие в состав нуклеиновых кислот, соединяются между собой по типу "3-5 связи". Это означает, что соединение происходит путем образования эфирных связей между остатком фосфорной кислоты и двумя гидроксилами: одним, находящимся у 3-го углеродного атома пентозы одного мононуклеотида, и другим, расположенным у 5-го углеродного атома пентозы последующего мононуклеотида. Соединенные таким путем мононуклеотиды характеризуют первичную структуру нуклеиновых кислот.

Первичная структура ДНК
Первичная структура ДНК

В зависимости от входящего в их состав углевода - рибозы или дезоксирибозы нуклеиновые кислоты подразделяются на рибонуклеиновые и дезоксирибонуклеиновые кислоты, или, сокращенно, РНК и ДНК. Они различаются по структуре, месту нахождения и функциям.

ДНК в основном сосредоточена в ядре (и ядрышке) клетки. Ее главная функция заключается в том, что она является носителем наследственности. Генетические особенности каждого индивидуума заключены в определенной последовательности азотистых оснований, входящих в состав первичной структуры ДНК (см. Биосинтез белка).

Рис. 17. Вторичная структура ДНК (двойная спираль). У - углевод (дезоксирибоза); Р - остаток фосфорной кислоты; А, Т, Г, Ц - азотистые основания
Рис. 17. Вторичная структура ДНК (двойная спираль). У - углевод (дезоксирибоза); Р - остаток фосфорной кислоты; А, Т, Г, Ц - азотистые основания

Структура ДНК имеет свои особенности. Это относится в первую очередь к азотистым основаниям. Установлено, что в молекуле ДНК встречаются следующие основания: аденин, гуанин, тимин и цитозин, которые часто обозначаются первыми буквами - А, Г, Т и Ц. При дальнейшем изучении структуры ДНК оказалось, что ее вторичная структура представляет собой двутяжную антипараллельную спираль. Схематично это напоминает винтовую лестницу (рис. 17), перила которой образованы пентозами, соединенными фосфоэфирными связями по типу "3-5 связи", а ступени - парами азотистых оснований, которые соединены между собой водородными связями. Между аденином и тимином образуются две связи, а при соединении гуанина и цитозинатри. Работами С. Очоа, Э. Чаргаффа и других были установлены определенные взаимоотношения между азотистыми основаниями, входящими в состав ДНК Они заключаются в том, что во вторичной структуре ДНК определенное пуриновое основание всегда соединяется только с вполне определенным пиримидиновым основанием. Так, аденин соединяется только с тимином, а гуанин с цитозином (или А Т и Г Ц). В основе такого соединения лежит принцип комплементарнобти дополнения (рис. 18). На рис. 17 представлен участок вторичной структуры ДНК, на котором обо значены типы связей: "3-5 связь" между отдельными мононуклеотидами и водородные связи между азотистыми основаниями.


Рис. 18. Двойная нить ДНК
Рис. 18. Двойная нить ДНК

Еще одной особенностью вторичной структуры ДНК является противоположное расположение двух цепей мононуклеотидов. На рис. 19 стрелками указано антипараллельное направление этих цепей. Рассмотренная модель вторичной структуры ДНК была впервые предложена Дж. Уотсоном и Ф. Криком.

Рис. 19. Схема водородной и фосфоэфирных связей на участке вторичной структуры молекулы ДНК
Рис. 19. Схема водородной и фосфоэфирных связей на участке вторичной структуры молекулы ДНК

Третичная структура ДНК - это расположенная в пространстве двутяжная антипараллельная спираль.

РНК обнаружена почти во всех субклеточных фракциях. Наибольшее ее количество (60-80%) сосредоточено в рибосомах, а оставшаяся часть распределена в цитоплазме и ядрышке. РНК представлена 3 видами: информационная (и-РНК), транспортная (т-РНК) и рибосомная (р-РНК), каждая из которых характеризуется специфическими свойствами и функциями. и-РНК, или матричная, является основой (матрицей) для биосинтеза белка. На и-РНК закодированы генетические особенности данного вида белка определенного органа или ткани. и-РНК строится на ДНК и, следовательно, комплементарно повторяет особенности ее структуры. т-РНК переносит активированные аминокислоты к местам биосинтеза белка - рибосомам, которые в основном построены из рибосомальной РНК (р-РНК).

Первичная структура РНК
Первичная структура РНК

Рис. 20. Схема водородных связей на участке вторичной структуры молекулы РНК
Рис. 20. Схема водородных связей на участке вторичной структуры молекулы РНК

В составе РНК обнаружены фосфорная кислота, из углеводов - рибоза вместо дезоксирибозы в ДНК и азотистые основания - аденин, гуанин, цитозин и урацил (в ДНК - тимин) - А, Г, Ц и У. Первичная структура РНК одинакова с первичной структурой ДНК и представляет собой последовательное соединение мононуклеотидов при помощи фосфоэфирных связей. Вторичная структура РНК представляет собой участки первичной структуры, перекрученные между собой в виде спирали, которые удерживаются за счет водородных связей, образованных между азотистыми основаниями по принципу комплементарное, т. е. А - У и Г - Ц. Таким образом, существует различие с ДНК, где вместо тимина к аденину присоединяется урацил (рис. 20), Третичная структура РНК - это пространственное расположение всей молекулы РНК (рис. 21).

Рис. 21. Участок третичной структуры молекулы РНК. 1 - участки первичной структуры, 2 - участки вторичной структуры
Рис. 21. Участок третичной структуры молекулы РНК. 1 - участки первичной структуры, 2 - участки вторичной структуры

Хромопротеиды

Небелковая часть этих сложных белков представлена окрашенными соединениями Представителями хромопротеидов в животном организме являются гемоглобин и миоглобин, а в растительных клетках - хлорофилл. К группе хромопротеидов относятся некоторые ферменты, например каталаза и пероксидаза крови. Приоритет в изучении химической природы красящего вещества гемоглобина принадлежит М. В. Ненцкому. Гемоглобин состоит из белка основного характера - глобина и небелковой части - гема, в составе которого имеется атом двухвалентного железа. В молекуле гемоглобина обнаружено 4 гема.

Гемоглобин (Нb) в организме может находиться в разных формах. Оксигемоглобин - НbO2 - характеризует важнейшую биологическую функцию гемоглобина - снабжение клеток организма кислородом. Присоединение кислорода к гемоглобину происходит за счет специфических (координационных) связей с железом. При этом окисления железа не происходит и оно остается двухвалентным. Такая связь является весьма непрочной и легко разрывается при изменении парциального давления. Присоединение кислорода к гемоглобину происходит в легких, откуда кровью НbO2 разносится ко всем органам и тканям, где кислород освобождается и используется клетками. Гемоглобин же присоединяет к себе один из конечных продуктов обмена веществ, в клетках - углекислый газ - и транспортирует его к легким. Здесь СO2 отщепляется и выводится из организма при дыхании. Освободившийся гемоглобин вновь присоединяет кислород и процесс транспорта газа повторяется.

Соединение гемоглобина с угарным газом - СО называется карбоксигемоглобином - НbСО. НbСО образуется при отравлении организма угарным газом и намного прочнее связывается с гемоглобином, чем кислород, и выключает таким образом гемоглобин из транспорта кислорода. Соответственно к органам и тканям поступает меньше кислорода, в результате чего возникает кислородное голодание, а снижение поступления кислорода к мозгу приводит к потере сознания.

При окислении гемоглобина окислителями валентность железа изменяется и оно становится трехвалентным, а гемоглобин превращается в метгемоглобин - HbOH.

Рис. 22. Спектры поглощения. 1 - солнечный спектр; 2 - оксигемоглобин; 3 - гемоглобин; 4 - карбоксигемоглобин; 5 - метгемоглобин
Рис. 22. Спектры поглощения. 1 - солнечный спектр; 2 - оксигемоглобин; 3 - гемоглобин; 4 - карбоксигемоглобин; 5 - метгемоглобин

Одним из методов распознавания производных гемоглобина является исследование их спектров поглощения. Как установлено, при прохождении луча белого света через призму он разлагается на ряд цветных лучей, видимых на экране, от красного до фиолетового, что дает известную картину спектра, как, например, радуга. Если на пути луча между источником света и призмой поместить раствор с веществом, способным к поглощению луча с определенной длиной волны, то в определенных местах должны появиться темные, неосвещенные участки. Такой спектр называется спектром поглощения (рис. 22). Сам гемоглобин (рис. 22, 3) дает одну широкую темную полосу между линиями D и Е. НbО2 (рис. 22, 2) в этих же границах дает две темные линии, и НbCO (4) и НbОН (5) показывают свои специфические спектры поглощения.

Миоглобин - хромопротеид мышц - дыхательный пигмент мышц. Особенностью миоглобина является его более легкая способность присоединять кислород и значительно труднее по сравнению с гемоглобином его отдавать. Миоглобин создает запасы кислорода в мышцах, количество которого может достигать 14% всего кислорода организма. Это имеет важное значение, особенно для деятельности мышцы сердца. В мышцах морских животных (тюлень, морж, кашалот) высокое содержание миоглобина позволяет им длительное время находиться под водой, несмотря на отсутствие жабер.

Глюкопротеиды

Это сложные белки, простетическая группа которых представлена производными углеводов, среди которых встречаются аминосахара, гексуроновые кислоты и др. В составе отдельных глюкопротеидов обнаружены остатки серной и уксусной кислот Глюкопротеиды составляют основу муцинов - слизистых веществ, которые встречаются в большом количестве в секретах желудочно-кишечного тракта, подчелюстной слюнной железы.

Фосфопротеиды

Соединения этого класса сложных белков характеризуются наличием фосфорной кислоты. Представителями являются казеиноген молока, вителлин - белок, выделенный из желтков яиц, ихтулин - белок рыбьей икры и др. Фосфопротеиды являются питательным материалом для растущих организмов.

Липопротеиды

Липопротеиды представляют собой комплексные соединения белка и различных жиров (холестерина, нейтрального жира, фосфолипидов и др.). У растворимых липопротеидов белковая часть расположена на поверхности молекулы. В организме различные их фракции, например α- и β-липопротеиды, обнаружены в составе плазмы крови, нервной ткани, а также в яичном желтке, молоке.

Одной из основных функций липопротеидов является транспорт жира.

Концентрация липопротеидов в сыворотке крови меняется при отдельных заболеваниях, поэтому их определение имеет диагностическое значение, как, например; при атеросклерозе, когда увеличено содержание β-липопротеидов.

предыдущая главасодержаниеследующая глава











© CHEMLIB.RU, 2001-2021
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://chemlib.ru/ 'Библиотека по химии'

Рейтинг@Mail.ru

Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь