§ 2. Сравнительные возможности дифракционных методов изучения структуры кристаллов и веществ в других агрегатных состояниях
Зависимость интенсивности рассеяния дифрагируемых лучей от угла рассеяния для одноатомных газов имеет характер плавно нисходящей кривой (кривая 7, рис. 60).
В случае молекулярных газов наложение волн, рассеиваемых соседними атомами молекулы, приводит к возникновению в этой кривой нескольких размытых максимумов (кривая 2); их число, расположение и высота зависят от сложности структуры молекулы.
Жидкости и стекла, в которых существует определенная степень дальнего порядка (флюктуирующая статистическая упорядоченность размещения структурных элементов), рассеивают еще более неравномерно; число и резкость максимумов возрастают (кривая 3). Предельным случаем можно считать дебаеграмму, полученную с поликристаллического образца. Здесь рассеяние носит дискретный характер: максимумы превращаются в резкие линии (кривая 4).
Неравномерность зависимости интенсивности от угла рассеяния позволяет использовать дифракционный эффект для структурных исследований веществ в любом агрегатном состоянии. Сказанное в одинаковой мере относится к дифракции рентгеновских лучей, электронов и нейтронов. Помимо рентгеноструктурного анализа кристаллов наибольшее распространение и признание получили рентгенография стекол и особенно электронография газов и паров.
Следует, однако, подчеркнуть одну принципиальную разницу между структурным анализом кристаллов и дифракционными методами изучения строения вещества в других агрегатных состояниях. Ориентационная неупорядоченность молекул в газах и жидкостях и неупорядоченность структурных элементов в стеклах позволяют получать из дифракционных данных лишь картину строения, усредненную по всем возможным ориентациям. Пространственную архитектуру молекул (в случае газов и жидкостей) или структуры в целом (в случае стекол) приходится восстанавливать, пользуясь приемами индукции, а не дедукции.
Наиболее наглядно это различие между возможностями дифракции кристаллических и некристаллических веществ проявляется при сопоставлении родственных методов анализа.
В случае кристалла Фурье-преобразование интенсивности I(hkl) приводит к трехмерному распределению межатомной функции P(uvw), в случае некристаллического вещества Фурье-преобразование интенсивности I(φ) позволяет построить лишь одномерную кривую радиального распределения P(u)*. Аналогичную кривую для кристалла можно получить, если мысленно спроектировать трехмерное распределение P(uvw) по сферическим поясам на одну общую прямую. Такая операция означает превращение системы межатомных векторов в систему межатомных расстояний, лишенных пространственной направленности Степень обеднения картины очевидна.
* (Именно этот прием анализа ввел Уоррен в 1934 г)
Если даже предположить, что все максимумы на кривой радиального распределения полностью разрешаются, восстановление пространственного размещения атомов по межатомным отрезкам неизвестной ориентации не является однозначной операцией. "Поэтому в газовой электронографии и других родственных методах всегда приходится прибегать к анализу априорных моделей структуры, сравнивая расчетную кривую радиального распределения с экспериментальной, и двигаться постепенно от более простых к более сложным родственным по составу соединениям. В сущности в основе всей процедуры лежит метод проб и ошибок.
Структурные исследования кристаллических веществ (до определенного достаточно высокого уровня сложности) могут проводиться чисто дедуктивно без привлечения моделей; основу этой возможности создает фиксированная ориентация структурных элементов в пространстве. Дифракционный анализ кристаллических объектов является поэтому уникальным методом прямого микроскопирования атомной структуры вещества.